2 research outputs found

    Style Separation and Synthesis via Generative Adversarial Networks

    Full text link
    Style synthesis attracts great interests recently, while few works focus on its dual problem "style separation". In this paper, we propose the Style Separation and Synthesis Generative Adversarial Network (S3-GAN) to simultaneously implement style separation and style synthesis on object photographs of specific categories. Based on the assumption that the object photographs lie on a manifold, and the contents and styles are independent, we employ S3-GAN to build mappings between the manifold and a latent vector space for separating and synthesizing the contents and styles. The S3-GAN consists of an encoder network, a generator network, and an adversarial network. The encoder network performs style separation by mapping an object photograph to a latent vector. Two halves of the latent vector represent the content and style, respectively. The generator network performs style synthesis by taking a concatenated vector as input. The concatenated vector contains the style half vector of the style target image and the content half vector of the content target image. Once obtaining the images from the generator network, an adversarial network is imposed to generate more photo-realistic images. Experiments on CelebA and UT Zappos 50K datasets demonstrate that the S3-GAN has the capacity of style separation and synthesis simultaneously, and could capture various styles in a single model

    Molecular cloning and characterization of novel cathelicidin-derived myeloid antimicrobial peptide from Phasianus colchicus

    No full text
    Cathelicidins were initially characterized as a family of antimicrobial peptides. Now it is clear that they fulfill several immune functions in addition to their antimicrobial activity. In the current work, three cDNA sequences encoding pheasant cathelicidins were cloned from a constructed bone marrow cDNA library of Phasianus colchicus, using a nested-PCR-based cloning strategy. The three deduced mature antimicrobial peptides, Pc-CATH1, 2 and 3 are composed of 26, 32, and 29 amino acid residues, respectively. Unlike the mammalian cathelicidins that are highly divergent even within the same genus, Pc-CATHs are remarkably conserved with chicken fowlicidins with only a few of residues mutated according to the phylogenetic analysis result. Synthetic Pc-CATH1 exerted strong antimicrobial activity against most of bacteria and fungi tested, including the clinically isolated (IS) drug-resistant strains. Most MIC values against Gram-positive bacteria were in the range of 0.09-2.95 mu M in the presence of 100 mM NaCl. Pc-CATH1 displayed a negligible hemolytic activity against human erythrocytes, lysing 3.6% of erythrocytes at 3.15 mu M (10 mu g/ml), significantly higher than the corresponding MIC. Pc-CATH1 was stable in the human serum for up to 72 h, revealing its extraordinary serum stability. These specific features of Pc-CATH1 may make its applications much wider given the potency and breadth of the peptide's bacteriocidal capacity and its resistance towards serum and high-salt environments. (C) 2010 Elsevier Ltd. All rights reserved
    corecore